

Welcome to Patchwork’s documentation!

Contents:

	patchwork
	Download

	Design

	Getting Started

	Support

	Deploying Patchwork
	Database Configuration

	Django Setup

	Apache Setup

	Configure patchwork

	Subscribe a Local Address to the Mailing List

	Setup your MTA to Deliver Mail to the parsemail Script

	Set up the patchwork cron script

	(Optional) Configure your VCS to Automatically Update Patches

	User Manual
	Submitting patches

	git-pw

	Testing with Patchwork
	Flow

	git-pw helper commands

	Example: running checkpatch.pl on incoming series

	REST API
	API Patterns

	API Reference

	API Revisions

	Developing patchwork
	Quick Start

	Using virtualenv

	Environment Variables

	Running Tests

patchwork

patchwork is a patch tracking system for community-based projects. It is
intended to make the patch management process easier for both the
project’s contributors and maintainers, leaving time for the more
important (and more interesting) stuff.

Patches that have been sent to a mailing list are ‘caught’ by the
system, and appear on a web page. Any comments posted that reference the
patch are appended to the patch page too. The project’s maintainer can
then scan through the list of patches, marking each with a certain
state, such as Accepted, Rejected or Under Review. Old patches can be
sent to the archive or deleted.

Currently, patchwork is being used for a number of open-source projects,
mostly subsystems of the Linux kernel. Although Patchwork has been
developed with the kernel workflow in mind, the aim is to be flexible
enough to suit the majority of community projects.

Download

The latest version of Patchwork is available with git. To download:

$ git clone https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo.git

Patchwork is distributed under the GNU General Public
License [http://www.gnu.org/licenses/gpl-2.0.html].

Design

patchwork should supplement mailing lists, not replace them

Patchwork isn’t intended to replace a community mailing list; that’s why
you can’t comment on a patch in patchwork. If this were the case, then
there would be two forums of discussion on patches, which fragments the
patch review process. Developers who don’t use patchwork would get left
out of the discussion.

However, a future development item for patchwork is to facilitate
on-list commenting, by providing a “send a reply to the list” feature
for logged-in users.

Don’t pollute the project’s changelogs with patchwork poop

A project’s changelogs are valuable - we don’t want to add
patchwork-specific metadata.

patchwork users shouldn’t require a specific version control system

Not everyone uses git for kernel development, and not everyone uses git
for patchwork-tracked projects.

It’s still possible to hook other programs into patchwork, using the
pwclient command-line client for patchwork, or directly to the XML RPC
interface.

Getting Started

You should check out the Deploying Patchwork and Developing patchwork
guides for information on how to get to work with patchwork.

Support

For questions and contributions, please use the GitLab project [https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo/].

Deploying Patchwork

Patchwork uses the Django framework - there is some background on
deploying Django applications here:

http://www.djangobook.com/en/2.0/chapter12/

You’ll need the following (applications used for patchwork development
are in brackets):

	A Python interpreter

	Django [https://www.djangoproject.com/] >= 1.7. The latest
version is recommended

	A web server and suitable WSGI plugin. Options include
Apache [http://httpd.apache.org/] with the
mod_python [http://modpython.org/] plugin, or
Gunicorn [http://gunicorn.org/] with
nginx [http://nginx.org/] as the proxy server

	A database server (PostgreSQL, MySQL)

	Relevant Python modules for the database server (see the various
requirements.txt files)

Database Configuration

Django’s ORM support multiple database backends, though the majority of
testing has been carried out with PostgreSQL and MySQL.

We need to create a database for the system, add accounts for two system
users: the web user (the user that your web server runs as) and the mail
user (the user that your mail server runs as). On Ubuntu these are
www-data and nobody, respectively.

As an alternative, you can use password-based login and a single
database account. This is described further down.

NOTE: For the following commands, a $ prefix signifies that the
command should be entered at your shell prompt, and a > prefix
signifies the command-line client for your SQL server (psql or
mysql).

Install Packages

If you don’t already have MySQL installed, you’ll need to do so now. For
example, to install MySQL on RHEL:

$ sudo yum install mysql-server

Create Required Databases and Users

PostgreSQL (ident-based)

PostgreSQL support ident-based
authentication [http://www.postgresql.org/docs/8.4/static/auth-methods.html#AUTH-IDENT],
which uses the standard UNIX authentication method as a backend. This
means no database-specific passwords need to be set/used. Assuming you
are using this form of authentication, you just need to create the
relevant UNIX users and database:

$ createdb patchwork
$ createuser www-data
$ createuser nobody

PostgreSQL (password-based)

If you are not using the ident-based authentication, you will need to
create both a new database and a new database user:

$ createuser -PE patchwork
$ createdb -O patchwork patchwork

MySQL

$ mysql
> CREATE DATABASE patchwork CHARACTER SET utf8;
> CREATE USER 'www-data'@'localhost' IDENTIFIED BY '<password>';
> CREATE USER 'nobody'@'localhost' IDENTIFIED BY '<password>';

Configure Settings

Once that is done, you need to tell Django about the new database
settings, by defining your own production.py settings file (see
below). For PostgreSQL:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'HOST': 'localhost',
 'PORT': '',
 'USER': 'patchwork',
 'PASSWORD': 'my_secret_password',
 'NAME': 'patchwork',
 'TEST_CHARSET': 'utf8',
 },
}

If you’re using MySQL, only the ENGINE changes:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 ...
 },
}

NOTE: TEST/CHARSET is used when creating tables for the test
suite. Without it, tests checking for the correct handling of non-ASCII
characters fail.

Django Setup

Configure Directories

Set up some initial directories in the patchwork base directory:

mkdir -p lib/packages lib/python

lib/packages is for stuff we’ll download, lib/python is to add
to our Python path. We’ll symlink Python modules into lib/python.

At the time of release, patchwork depends on Django version 1.7 or
later. Where possible, try to use the latest stable version (currently
1.8). Your distro probably provides this. If not, install it manually:

cd lib/packages
git clone https://github.com/django/django.git -b stable/1.8.x
cd ../python
ln -s ../packages/django/django ./django

Configure Settings

You will also need to configure a
settings [https://docs.djangoproject.com/en/1.8/topics/settings/]
file for Django. A [sample settings file] is provided, which defines
default settings for patchwork. You’ll need to configure settings for
your own setup and save this as production.py (or override the
DJANGO_SETTINGS_MODULE environment variable).

cp patchwork/settings/production.example.py \
 patchwork/settings/production.py

At the very minimum, the following settings need to be configured:

SECRET_KEY
ADMINS
TIME_ZONE
LANGUAGE_CODE
DEFAULT_FROM_EMAIL
NOTIFICATION_FROM_EMAIL

You can generate the SECRET_KEY with the following python code:

import string, random
chars = string.letters + string.digits + string.punctuation
print repr("".join([random.choice(chars) for i in range(0,50)]))

If you wish to enable the XML-RPC interface, add the following to the
file:

ENABLE_XMLRPC = True

Configure Database Tables

Then, get patchwork to create its tables in your configured database:

PYTHONPATH=../lib/python ./manage.py migrate

Add privileges for your mail and web users. This is only needed if you
use the ident-based approach. If you use password-based database
authentication, you can skip this step.

For Postgresql:

psql -f lib/sql/grant-all.postgres.sql patchwork

For MySQL:

mysql patchwork < lib/sql/grant-all.mysql.sql

Other Tasks

You will need to collect the static content into one location from which
it can be served (by Apache or nginx, for example):

PYTHONPATH=lib/python ./manage.py collectstatic

You’ll also need to load the initial tags, states and actions into the
patchwork database:

PYTHONPATH=lib/python ./manage.py loaddata default_tags default_states default_events

Apache Setup

Example Apache configuration files are in lib/apache2/.

WSGI

django has built-in support for WSGI, which supersedes the fastcgi
handler. It is thus the preferred method to run patchwork.

The necessary configuration for Apache2 may be found in:

lib/apache2/patchwork.wsgi.conf.

You will need to install/enable mod_wsgi for this to work:

a2enmod wsgi
apache2ctl restart

Configure patchwork

Now, you should be able to administer patchwork, by visiting the URL:

http://your-host/admin/

You’ll probably want to do the following:

	Set up your projects

	Configure your website address (in the Sites section of the admin)

Subscribe a Local Address to the Mailing List

You will need an email address for patchwork to receive email on - for
example - patchwork@your-host, and this address will need to be
subscribed to the list. Depending on the mailing list, you will probably
need to confirm the subscription - temporarily direct the alias to
yourself to do this.

Setup your MTA to Deliver Mail to the parsemail Script

Your MTA will need to deliver mail to the parsemail script in the
email/directory. (Note, do not use the parsemail.py script
directly). Something like this in /etc/aliases is suitable for postfix:

patchwork: "|/srv/patchwork/patchwork/bin/parsemail.sh"

You may need to customise the parsemail.sh script if you haven’t
installed patchwork in /srv/patchwork.

Test that you can deliver a patch to this script:

sudo -u nobody /srv/patchwork/patchwork/bin/parsemail.sh < mail

Set up the patchwork cron script

Patchwork uses a cron script to clean up expired registrations, and send
notifications of patch changes (for projects with this enabled).
Something like this in your crontab should work:

m h dom mon dow command
*/10 * * * * cd patchwork; ./manage.py cron

The frequency should be the same as the NOTIFICATION_DELAY_MINUTES
setting, which defaults to 10 minutes.

(Optional) Configure your VCS to Automatically Update Patches

The tools directory of the patchwork distribution contains a file named
post-receive.hook which is a sample git hook that can be used to
automatically update patches to the Accepted state when
corresponding commits are pushed via git.

To install this hook, simply copy it to the .git/hooks directory on
your server, name it post-receive, and make it executable.

This sample hook has support to update patches to different states
depending on which branch is being pushed to. See the STATE_MAP
setting in that file.

If you are using a system other than git, you can likely write a similar
hook using pwclient to update patch state. If you do write one,
please contribute it.

Some errors:

	ERROR: permission denied for relation patchwork_... The user that
patchwork is running as (i.e. the user of the web-server) doesn’t
have access to the patchwork tables in the database. Check that your
web server user exists in the database, and that it has permissions
to the tables.

	pwclient fails for actions that require authentication, but a
username and password is given in ~/.pwclientrc. Server reports “No
authentication credentials given”. If you’re using the FastCGI
interface to Apache, you’ll need the -pass-header Authorization
option to the FastCGIExternalServer configuration directive.

User Manual

Submitting patches

Initial Submission

Patches are normally submitted with git send-email to a mailing list. For
instance, if we branched from master, have three patches to submit, we can
use:

$ git send-email --to=<mailing-list> --cover-letter --annotate master

This command will produce the following email thread (providing you have
the chainreplyto configuration option set to false):

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
+--> [PATCH 3/3] Patch 3

Patchwork receives those mails and construct Series and Patches objects
to present a high level view of the mailing-list activity and a way to
track what happens to that submission.

It’s a good idea to include a cover letter to introduce the work.
Patchwork will also pick up that cover letter and name the series with
the subject of that email.

When sending only one patch, it’s a bit much to send a cover letter
along with it as the commit message should provide enough context. In
that case, Patchwork will use the subject of the patch as the series
title.

New Versions

Sometimes, maybe even more often than hoped, one needs to resend a few
patches or even entire series to address review comments.

Patchwork supports:

	Re-sending a single patch as a reply to the reviewer email. This is
usually only used when a few patches have to be resent.

	Re-sending a full series as a new thread.

A Series object in patchwork tracks all the changes on top of the
initial submission.

New Patch

To send a v2 of a patch part of a bigger series, one would do something
similar to:

$ git send-email --to=<mailing-list> --cc=<reviewer> \
 --in-reply-to=<reviewer-mail-message-id> \
 --reroll-count 2 -1 HEAD~2

And, continuing the previous example, this would result in the following
email thread:

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
| +--> Re: [PATCH 2/3] Patch 2 (reviewer comments)
| +--> [PATCH v2 2/3] Patch 2 (v2 of patch 2/3)
+--> [PATCH 3/3] Patch 3

Patch work will create a new revision of the series, updating patch
#2 to the new version of that patch.

New Series

When something is really wrong or when, to address the review, most
patches of a series need to be revised, re-sending individual emails can
be both annoying for the patch author but also hard to follow from the
reviewer side. It’s then better to re-send a full new thread and forget
the previous one.

Patchwork will get that and create a new revision of the initial series
with all patches updated to the latest and greatest.

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
+--> [PATCH 3/3] Patch 3

+ [PATCH v2 0/3] Cover Letter Subject
+--> [PATCH v2 1/3] Patch 1 (v2 of patch 1/3)
+--> [PATCH v2 2/3] Patch 2 (v2 of patch 2/3)
+--> [PATCH v2 3/3] Patch 3 (v2 of patch 3/3)

Patchwork uses the cover letter subject to detect that intent. So one
doesn’t need to use the reroll-count like above, the following
would work as well:

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
+--> [PATCH 3/3] Patch 3

+ [PATCH 0/3] Cover Letter Subject (v2)
+--> [PATCH 1/3] Patch 1 (v2 of patch 1/3)
+--> [PATCH 2/3] Patch 2 (v2 of patch 2/3)
+--> [PATCH 3/3] Patch 3 (v2 of patch 3/3)

Of course, we’ve now entered a dangerous territory. Trying to parse some
human-generated text. The regular expression used accepts several ways
of saying that the series is a new version of a previous one. If your
favourite way isn’t among what’s supported, consider contributing (like
filing an issue)!

Considering an initial series with Awesome feature as the cover
letter subject, Patchwork will considering series with the following
cover letter subjects as new revisions:

	Regular Expression

	Cover Letter

	
	
	Awesome feature

	awesome feature

	[, \(]*(v|take)[\) 0-9]+$')

	
	Awesome feature v2

	awesome feature V2

	Awesome feature, v3

	Awesome feature (v4)

	Awesome feature (take 5)

	Awesome feature, take 6

git-pw

git-pw (or git pw) is a command line tool that bridges git and
patchwork.

Installation

Requirements

git-pw uses GitPython and requests, so those dependencies need to be
installed. Using the distribution packages should work.

On Fedora:

$ sudo dnf install GitPython python-requests

On Debian/Ubuntu:

$ sudo apt-get install python-git python-requests

Alternatively it’s possible to use pip. git-pw/requirements.txt in
the patchwork git repository [https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo/] has the list of required packages:

$ cat git-pw/requirements.txt
GitPython
requests
$ pip install -r requirements.txt

Getting git-pw

git-pw can be directly downloaded from patchwork’s git repository [https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo/blob/master/docs/examples/testing-checkpatch.py], given
execution permission (chmod +x) and put it anywhere in your
PATH.

Because this tool is still very young and to easily get the latest version I
would suggest cloning patchwork’s repository [https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo/] and use a symlink. This way,
git-pw can be updated with a single git pull command. From
patchwork’s checkout:

$ ln -s $PWD/git-pw/git-pw ~/.local/bin/

Setup

git-pw configuration is stored in git config files and so can be set per
git repository. Two pieces of information are needed to get started: the URL
of the patchwork instance and the project this git repository maps to.

For example, the following sets git-pw up for the intel-gfx project on
freedesktop.org:

$ git config patchwork.default.url https://patchwork.freedesktop.org
$ git config patchwork.default.project intel-gfx

git-pw is ready to go! Applying a series known to patchwork to the current
git tree is now a single command away:

$ git pw apply -s 122
Applying series: DP refactoring v2 (rev 1)
Applying: drm/i915: Don't pass *DP around to link training functions
Applying: drm/i915: Split write of pattern to DP reg from intel_dp_set_link_train
Applying: drm/i915 Call get_adjust_train() from clock recovery and channel eq
Applying: drm/i915: Move register write into intel_dp_set_signal_levels()
Applying: drm/i915: Move generic link training code to a separate file
...

Testing with Patchwork

Patchwork can be used in conjunction with tests suites to build a CI system.

Flow

Patches sent to the mailing list are grouped into series by Patchwork which,
then, exposes events corresponding to the mailing-list activity. Listening to
those events, one or more testing infrastructure(s) can retrieve the patches,
test them and post test results back to Patchwork to display them in the web
UI. Optionally, Patchwork can send those test results back to the user
and/or mailing-list.

The following diagram describes that flow:

[image: _images/testing-ci-flow.png]

Series and Revisions

Details about steps 1 and 2 can be found in Submitting patches.

Polling for events

Step 3 is Patchwork exposing new series and new series revisions appearing on
the mailing list through the series-new-revision event.
This event is created when Patchwork has seen all patches that are part of a
new series/revision, so the API user can safely start processing the new series
as soon as they notice the new event, which, for now, is done polling the
/events/ entry point.

To poll for new events, the user can use the since GET [https://tools.ietf.org/html/rfc7231#section-4.3.1]
parameter to ask for events since the last query. The time stamp to give to
that since parameter is the event_time of the last event seen.

Testing

Step 4 is, of course, where the testing happens. A mbox file of the series to
test can be retrieved with the
/mbox/
revision method.

Test results

Once done, results are posted back to Patchwork in step 5 with the
/test-results/ entry point.

One note on the intention behind the pending state: if running the test(s)
takes a long time, it’s a good idea to mark the test results as pending as
soon as the series-new-revision event has been detected to indicate to the
user their patches have been picked up for testing.

Email reports

Finally, step 6, the test results can be communicated back by mail to the
submitter. By default, Patchwork will not send any email, that’s to allow test
scripts authors to develop without the risk of sending confusing emails to
people.

The test result emailing is configurable per test, identified by a unique tuple
(project, test_name). That configuration is done using the Django
administration interface. The first parameter to configure is the email
recipient(s):

	none

	No test result email should be sent out (default).

	submitter

	Test result emails are sent to the patch submitter.

	mailing list

	Test result emails are sent to the patch submitter with the project
mailing-list in Cc.

	recipient list

	Test result emails are sent to the list of email addresses specified in the
Mail To list field.

The Mail To list and Mail Cc list are list of addresses that will be
appended to the To: and Cc: fields.

When the test is configured to send emails, the when to send can be tweaked
as well:

	always

	Always send an email, disregarding the status of the test result.

	on warning/failure

	Only send an email when the test has some warnings or errors.

	on failure

	Only send an email when the test has some errors.

git-pw helper commands

To interact with Patchwork, the REST API can be used directly with any language
and an HTTP library. For python, requests [http://docs.python-requests.org/en/master/] is a winning choice and I’d have a
look at the git-pw source code [https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo/raw/master/git-pw/git-pw].

git-pw also provides a couple of commands that can help with writing
test scripts without resorting to using the REST API.

git pw poll-events

git pw poll-events will print events since the last invocation of this
command. The output is one event per line, oldest event first.
poll-events stores the time stamp of the last event seen in a file
called .git-pw.$project.poll.timestamp.

--since can be used to override the last seen time stamp and ask for all the
events since a specific date:

$ git pw poll-events --since=2016-02-12
{"series": 3324, "parameters": {"revision": 1}, "name": "series-new-revision", ... }
{"series": 3304, "parameters": {"revision": 3}, "name": "series-new-revision", ... }
{"series": 3072, "parameters": {"revision": 2}, "name": "series-new-revision", ... }
{"series": 3344, "parameters": {"revision": 1}, "name": "series-new-revision", ... }

As shown, git pw poll-events prints JSON objects on stdout. Its intended
usage is as input to a filter that would take each event one at a time and do
something with it, test a new revision for instance.

As a quick example of the above, to print the list of series created or updated
since a specific date (we need to use --name to select that type of event
only), a simple filter can be written:

#!/bin/python
import fileinput
import json

for line in fileinput.input():
 event = json.loads(line)
 series = event['series']
 revision = event['parameters']['revision']
 print("series %d (rev %d)" % (series, revision))

Which gives:

$ git pw poll-events --name=series-new-revision --since=2016-02-12 | ./show-series
series 3324 (rev 1)
series 3304 (rev 3)
series 3072 (rev 2)
series 3344 (rev 1)

git pw post-result

The other side of the patchwork interaction with testing is sending test
results back. Here as well git-pw provides a command to simplify the process.
Remember it’s always possible to directly use the REST API.

No need to repeat what’s written in the
/test-results/ documentation here. Just a couple of examples, setting
a test result as pending:

$ git pw post-result 3324 checkpatch.pl pending

And posting the final results:

$ git pw post-result 3324 checkpatch.pl failure --summary-from-file results.txt

Example: running checkpatch.pl on incoming series

A slightly longer example can be found in the Patchwork repository, in
docs/examples/testing-checkpatch.py [https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo/blob/master/docs/examples/testing-checkpatch.py]. This script will take
series-new-revision events as input, as offered by git pw poll-events and
run checkpatch.pl on the incoming series. The main complexity beyond what has
been explained in this document is that checkpatch.pl is run on each patch of
the series individually (by looping on all mails of the series mbox) and the
checkpatch.pl output is aggregated to be sent in the summary field of the
test result.

Putting the following line in a cron entry should be enough to run
checkpatch.pl on each new series:

git pw poll-events | testing-checkpatch.pl

There are a few improvements to make to have a nicer solution: for instance,
one could make sure that the checkpatch.pl script is up-to-date by updating the
Linux checkout before running the test.

REST API

Patchwork exposes a REST API to allow other systems and scripts to interact
with it. The basic service it offers is exposing a mailing-list used for
sending patches and review comments as high level objects: series, revisions
and patches.

	series

	A collection of revisions. Series objects are created, along with an
initial revision, when a set of patches are sent to a mailing-list,
usually through git send-email. Series can evolve over time and gain new
revisions as the work matures through reviews, testing and new iterations.

More about series and revisions can be found in Submitting patches.

	revision

	A collection of patches.

	patch

	The usual collection of changes expressed as a diff [https://en.wikipedia.org/wiki/Diff_utility]. With git, a patch
also contains full commit metadata.

API Patterns

All the API entry points share common patterns to offer a coherent whole and
limit surprises when using the API.

Lists

Various entry points expose lists of objects. They all follow the same
structure:

{
 "count": 25,
 "next": "http://patchwork.example.com/api/1.0/series/?page=2",
 "previous": null,
 "results": [
 {
 "object": 0
 },
 {
 "object": 1
 },
 {
 },
 {
 "object": 19
 },
]
}

Lists are paginated with 20 elements per page by default. count is the
total number of objects while next and previous will hold URLs to the
next and previous pages. It’s possible to change the number of elements per
page with the perpage GET parameter, with a limit of 100 elements per page.

API Reference

API Metadata

	
GET /api/1.0/

	Metadata about the API itself.

GET /api/1.0/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "revision": 0
}

	Response JSON Object

	
	revision (int) – API revision. This can be used to ensure the server
supports a feature introduced from a specific revision.
The list of API revisions and the changes introduced
by each of them is documented in API Revisions.

Projects

A project is merely one of the projects defined for this patchwork instance.

	
GET /api/1.0/projects/

	List of all projects.

GET /api/1.0/projects/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": 2,
 "name": "beignet",
 "linkname": "beignet",
 "listemail": "beignet@lists.freedesktop.org",
 "web_url": "http://www.freedesktop.org/wiki/Software/Beignet/",
 "scm_url": "git://anongit.freedesktop.org/git/beignet",
 "webscm_url": "http://cgit.freedesktop.org/beignet/"
 },
 {
 "id": 1,
 "name": "Cairo",
 "linkname": "cairo",
 "listemail": "cairo@cairographics.org",
 "web_url": "http://www.cairographics.org/",
 "scm_url": "git://anongit.freedesktop.org/git/cairo",
 "webscm_url": "http://cgit.freedesktop.org/cairo/"
 }
]
}

	
GET /api/1.0/projects/(string: linkname)/

	

	
GET /api/1.0/projects/(int: project_id)/

	GET /api/1.0/projects/intel-gfx/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "id": 1,
 "name": "intel-gfx",
 "linkname": "intel-gfx",
 "listemail": "intel-gfx@lists.freedesktop.org",
 "web_url": "",
 "scm_url": "",
 "webscm_url": ""
}

Events

	
GET /api/1.0/projects/(string: linkname)/events/

	

	
GET /api/1.0/projects/(int: project_id)/events/

	List of events for this project.

GET /api/1.0/projects/intel-gfx/events/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "count": 23,
 "next": "http://patchwork.example.com/api/1.0/events/?page=2",
 "previous": null,
 "results": [
 {
 "name": "series-new-revision",
 "event_time": "2015-10-20T19:49:49.494183",
 "series": 23,
 "patch": null,
 "user": null,
 "parameters": {
 "revision": 2
 }
 },
 {
 },
 {
 "name": "patch-state-change",
 "event_time": "2016-02-18T09:30:33.853206",
 "series": 285,
 "patch": 685
 "user": 1,
 "parameters": {
 "new_state": "Under Review",
 "previous_state": "New"
 }
 },
 {
 "name": "pull-request-new",
 "event_time": "2016-02-16T07:22:20.753101",
 "series": null,
 "patch": 682
 "user": null,
 "parameters": {
 "pull_url": "git://foo.bar/baz.git master"
 }
 }
]
}

	Query Parameters

	
	since – Retrieve only events newer than a specific time. Format is
the same as event_time in response, an ISO 8601 date. That
means that the event_time from the last seen event can
be used in the next query with a since parameter to only
retrieve events that haven’t been seen yet.

	name – Filter the events by name. This field is a comma separated
list of events names.

	series – Filter the events by series id.

	patch – Filter the events by patch id.

Each event type has some parameters specific to that event. At the moment,
two events are possible:

	series-new-revision: This event corresponds to patchwork receiving a new
revision of a series, should it be the initial submission or subsequent
updates. The difference can be made by looking at the version of the series.

This event only appears when patchwork has received the full set of mails
belonging to the same series, so the revision object is guaranteed to
contain all patches.

revision: The version of the new revision that has been created.
series and revision can be used to retrieve the corresponding
patches.

	patch-state-change: This event corresponds to patchwork receiving a
patch state change, either automatic or manually performed by an authorized
user, who will be identified by its patchwork-user id.

Series

A series object represents a lists of patches sent to the mailing-list through
git send-email. It also includes all subsequent patches that are sent to
address review comments, both single patch and full new series.

A series has then n revisions, n going from 1 to version.

	
GET /api/1.0/projects/(string: linkname)/series/

	

	
GET /api/1.0/projects/(int: project_id)/series/

	List of all Series belonging to a specific project. The project can be
specified using either its linkname or id.

GET /api/1.0/projects/intel-gfx/series/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "count": 59,
 "next": "http://patchwork.example.com/api/1.0/projects/intel-gfx/series/?page=2",
 "previous": null,
 "results": [
 {
 "id": 3,
 "project": 1,
 "name": "drm/i915: Unwind partial VMA rebinding after failure in set-cache-level",
 "n_patches": 1,
 "submitter": 77,
 "submitted": "2015-10-09T11:51:38",
 "last_updated": "2015-10-09T11:51:59.013345",
 "version": 1,
 "reviewer": null,
 "test_state": null,
 "state": "initial",
 "state_summary": [
 {
 "count": 1,
 "name": "New",
 "final": false
 }
]
 },
 {
 "id": 5,
 "project": 1,
 "name": "RFC drm/i915: Stop the machine whilst capturing the GPU crash dump",
 "n_patches": 1,
 "submitter": 77,
 "submitted": "2015-10-09T12:21:45",
 "last_updated": "2015-10-09T12:21:58.657976",
 "version": 1,
 "reviewer": null,
 "test_state": null,
 "state": "initial",
 "state_summary": [
 {
 "count": 1,
 "name": "New",
 "final": false
 }
]
 }
]
}

	Response JSON Object

	
	state – The state of the series. One of initial,
in progress, done or incomplete.

	state_summary – A summary of the patch status in the more recent
revision of the series. This a a list of objects
containing the number of patches (count) in a
given state (name). final is whether the
state is final or not, if a final decision (ie.
merged or rejected) has been made about a patch.

	Query Parameters

	
	project – Filter series by project id.

	name – Filter series by name.

	submitter – Filter series by submitter id. self can be used
as a special value meaning the current logged in user.

	reviewer – Filter series by reviewer id or null for no
reviewer assigned.

	submitted_since – Retrieve only submitted series newer than a
specified time. Format is the same as submitted
in response, an ISO 8601 date.

	updated_since – Retrieve only updated series newer than a
specified time. Format is the same as
last_updated in response, an ISO 8601 date.

	submitted_before – Retrieve only submitted series older than the
specified time. Format is the same as
submitted in response, an ISO 8601 date.

	updated_before – Retrieve only updated series older than a
specified time. Format is the same as
last_updated in response, an ISO 8601 date.

	test_state – Filter series by test state. Possible values are
pending, info, success, warning,
failure or null series that don’t have any test
result. It’s also possible to give a comma separated
list of states.

	
GET /api/1.0/series/

	List of all Series known to patchwork.

GET /api/1.0/series/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "count": 344,
 "next": "http://patchwork.example.com/api/1.0/series/?page=2",
 "previous": null,
 "results": [
 {
 "id": 10,
 "project": 1,
 "name": "intel: New libdrm interface to create unbound wc user mappings for objects",
 "n_patches": 1,
 "submitter": 10,
 "submitted": "2015-01-02T11:06:40",
 "last_updated": "2015-10-09T07:55:18.608251",
 "version": 1,
 "reviewer": null,
 "test_state": null,
 "state": "initial",
 "state_summary": [
 {
 "count": 1,
 "name": "New",
 "final": false
 }
]
 },
 {
 "id": 1,
 "project": 1,
 "name": "PMIC based Panel and Backlight Control",
 "n_patches": 4,
 "submitter": 1,
 "submitted": "2014-12-26T10:23:26",
 "last_updated": "2015-10-09T07:55:01.558523",
 "version": 1,
 "reviewer": null,
 "state": "initial",
 "state_summary": [
 {
 "count": 4,
 "name": "New",
 "final": false
 }
]
 },
]
}

	
GET /api/1.0/series/(int: series_id)/

	A series (series_id). A Series object contains metadata about the series.

GET /api/1.0/series/47/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, PUT, PATCH, HEAD, OPTIONS

{
 "id": 47,
 "name": "Series without cover letter",
 "n_patches": 2,
 "submitter": 21,
 "submitted": "2015-01-13T09:32:24",
 "last_updated": "2015-10-09T07:57:23.541373",
 "version": 1,
 "reviewer": null,
 "state": "initial",
 "state_summary": [
 {
 "count": 2,
 "name": "New",
 "final": false
 }
]
}

	
GET /api/1.0/series/(int: series_id)/revisions/

	The list of revisions of the series series_id.

GET /api/1.0/series/47/revisions/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "version": 1,
 "cover_letter": null,
 "patches": [
 120,
 121
]
 }
]
}

	
GET /api/1.0/series/(int: series_id)/revisions/(int: version)/

	The specific version of the series series_id.

GET /api/1.0/series/47/revisions/1/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "version": 1,
 "cover_letter": null,
 "patches": [
 120,
 121
]
}

	
GET /api/1.0/series/(int: series_id)/revisions/(int: version)/mbox/

	Retrieve an mbox file that will contain all patches of this revision, in
order in which to apply them. This mbox file can be directly piped into
git am.

	Query Parameters

	
	link – Add an HTTP link to the Patchwork patch page in each commit
message. This link is preceded by a tag which name is given
as argument of this parameter, eg. ?link=Patchwork.

$ curl -s http://patchwork.example.com/api/1.0/series/42/revisions/2/mbox/ | git am -3

	
POST /api/1.0/series/(int: series_id)/revisions/(int: version)/test-results/

	
Post test results for this revision.

POST /api/1.0/series/47/revisions/1/test-results/ HTTP/1.1

{
 "test_name": "checkpatch.pl",
 "state": "success",
 "url": "http://jenkins.example.com/logs/47/checkpatch.log",
 "summary": "total: 0 errors, 0 warnings, 10 lines checked"
}

	Request JSON Object

	
	test_name – Required. The name of the test we’re reporting results
for. This uniquely identifies the test. Any subsequent
data sent through this entry point with the same
test_name will be conflated into the same object.
It’s thus possible to create a test result with a
pending state when a CI system picks up patches to
indicate testing has started and then update the result
with the final (state, url, summary) when
finished.

	state – Required. State of the test results. One of pending,
success, warning or failure

	url – Optional. A URL where to find the detailed logs of the test
run.

	summary – Optional. A summary with some details about the results.
If set, this will be displayed along with the test result
to provide some detailed about the failure. It’s suggested
to use summary for something short while url can
be used for full logs, which can be rather large.

	
GET /api/1.0/series/(int: series_id)/revisions/(int: version)/test-results/

	
Get test results for this revision.

GET /api/1.0/series/47/revisions/1/test-results/ HTTP/1.1

[
 {
 "date": "2017-08-09T23:00:03.529",
 "state": "pending",
 "summary": "total: 0 errors, 0 warnings, 10 lines checked"
 "test_name": "checkpatch.pl",
 "url": "http://jenkins.example.com/logs/47/checkpatch.log"
 },
 {
 "date": "2017-08-09T23:00:05.551",
 "state": "warning",
 "summary": "total: 0 errors, 2 warnings, 20 passes"
 "test_name": "BAT",
 "url": "http://jenkins.example.com/logs/47/BAT.log"
 }
]

	Request JSON Object

	
	date – Date when the results were posted to the patchwork (ISO 8061).

Patches

	
GET /api/1.0/projects/(string: linkname)/patches/

	

	
GET /api/1.0/projects/(int: project_id)/patches/

	List of all patches belonging to a specific project. The project can be
specified using either its linkname or id.

GET /api/1.0/projects/intel-gfx/patches/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "count": 1392,
 "next": "http://patchwork.example.com/api/1.0/projects/intel-gfx/patches/?page=2",
 "previous": null,
 "results": [
 {
 "id": 1,
 "project": 1,
 "name": "[RFC,1/4] drm/i915: Define a common data structure for Panel Info",
 "date": "2014-12-26T10:23:27",
 "last_updated": "2014-12-26T10:23:27",
 "submitter": 1,
 "state": 1,
 "content": "<diff content>"
 },
 {
 "id": 4,
 "project": 1,
 "name": "[RFC,2/4] drm/i915: Add a drm_panel over INTEL_SOC_PMIC",
 "date": "2014-12-26T10:23:28",
 "last_updated": "2014-12-26T10:23:28",
 "submitter": 1,
 "state": 1,
 "content": "<diff content>"
 }
]
}

	Query Parameters

	
	project – Filter patches by project id.

	name – Filter patches by name.

	submitter – Filter patches by submitter id. self can be used
as a special value meaning the current logged in user.

	submitted_since – Retrieve only submitted patches newer than a
specified time. Format is the same as date
in response, an ISO 8601 date.

	updated_since – Retrieve only updated patches newer than a
specified time. Format is the same as
last_updated in response, an ISO 8601 date.

	submitted_before – Retrieve only submitted patches older than the
specified time. Format is the same as
date in response, an ISO 8601 date.

	updated_before – Retrieve only updated patches older than a
specified time. Format is the same as
last_updated in response, an ISO 8601 date.

	
GET /api/1.0/patches/

	List of all patches.

GET /api/1.0/patches/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "count": 1392,
 "next": "http://patchwork.example.com/api/1.0/patches/?page=2",
 "previous": null,
 "results": [
 {
 "id": 1,
 "project": 1,
 "name": "[RFC,1/4] drm/i915: Define a common data structure for Panel Info",
 "date": "2014-12-26T10:23:27",
 "last_updated": "2014-12-26T10:23:27",
 "submitter": 1,
 "state": 1,
 "content": "<diff content>"
 },
 {
 "id": 4,
 "project": 1,
 "name": "[RFC,2/4] drm/i915: Add a drm_panel over INTEL_SOC_PMIC",
 "date": "2014-12-26T10:23:28",
 "last_updated": "2014-12-26T10:23:28",
 "submitter": 1,
 "state": 1,
 "content": "<diff content>"
 }
]
}

	
GET /api/1.0/patches/(int: patch_id)/

	A specific patch.

GET /api/1.0/patches/120/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
 "id": 120,
 "name": "[1/2] drm/i915: Balance context pinning on reset cleanup",
 "date": "2015-01-13T09:32:24",
 "last_updated": "2015-01-13T09:32:24",
 "submitter": 21,
 "state": 1,
 "content": "<diff content>"
}

	
GET /api/1.0/patches/(int: patch_id)/mbox/

	Retrieve an mbox file. This mbox file can be directly piped into git am.

	Query Parameters

	
	link – Add an HTTP link to the Patchwork patch page in the commit
message. This link is preceded by a tag which name is given
as argument of this parameter, eg. ?link=Patchwork.

$ curl -s http://patchwork.example.com/api/1.0/patches/42/mbox/ | git am -3

API Revisions

Revision 3

	Add test results entry points:

	/series/${id}/revisions/${version}/test-results/

	/series/${id}/revisions/${version}/newrevision/

	Add the project, name, submitter, reviewer, submitted_since,
updated_since, submitted_before, updated_before and test_state query
parameters to the list of series entry points.

	Add the test_state, state and test_summary series fields.

	Add the patch-state-change event.

	Add the name query parameter to the /events/ entry point.

Revision 2

	Add mbox entry points for both patches and series:

	/patches/${id}/mbox/

	/series/${id}/revisions/${version}/mbox/

	Add a parameters field to events and include the revision number to the
series-new-revision event.

	Change /series/${id}/revisions/ to follow the same list system as other
entry points. This is technically an API change, but the impact is limited
at this early point. Hopefully no one will ever find out.

	Document how lists of objects work.

	Make all DateTime field serialize to ISO 8061 format and not the ECMA 262
subset.

	Add since, name, series and patch GET parameters to
/projects/${id,linkname}/events/

Revision 1

	Add /projects/${linkname}/events/ entry point.

Revision 0

	Initial revision. Basic objects exposed: api root, projects, series,
revisions and patches.

Developing patchwork

Quick Start

We have scripts that will get developers started in no time:

$ git clone https://gitlab.freedesktop.org/patchwork-fdo/patchwork-fdo.git
$ cd patchwork-fdo
$./tools/setup-devel.sh
$./tools/run-devel.sh

setup-devel.sh will:

	Create a virtual environment in the venv directory,

	Install all the required dependencies in that virtual environment,

	Populate a SQLite database with a few patches,

	Create an admin account with pass as password.

run-devel.sh will run the web server serve the patchwork
application. Pointing your browser to http://127.0.0.1:8000/ should
bring up patchwork.

Using virtualenv

It’s a good idea to use virtualenv to develop Python software. Virtual
environments are “instances” of your system Python, without any of the
additional Python packages installed. They are useful to develop and
deploy patchwork against a “well known” set of dependencies, but they
can also be used to test patchwork against several versions of Django.

	Install pip, virtualenv (python-pip, python-virtualenv packages)

Because we’re going to recompile our dependencies, we’ll also need
development headers. For the MySQL/MariaDB setups these are
mariadb-devel (Fedora), libmysqlclient-dev (Debian)

	Create a new virtual environment.

Inside a virtual env, we’ll just install the dependencies needed for
patchwork and run it from there.

$ virtualenv django-1.8

This will create a virtual env called ‘django-1.8’ in the eponymous
directory.

	Activate a virtual environment

$ source django-1.8/bin/activate
(django-1.8)$

The shell prompt is prepended with the virtual env name.

	Install the required dependencies

To ease this task, it’s customary to maintain a list of dependencies in
a text file and install them in one go. Patchwork can work with multiple
databases so we keep the requirements for each supported db:

(django-1.8)$ pip install -r docs/requirements-dev-mysql.txt

or:

(django-1.8)$ pip install -r docs/requirements-dev-postgresql.txt

	Export the DJANGO_SETTINGS_MODULE variable

Django needs to be told which settings to use. By default it will try to load
settings from the patchwork/settings/production.py file. This can be
overridden with the DJANGO_SETTINGS_MODULE environment variable.

Patchwork provides a convenience settings template suitable for development in
patchwork/settings/dev.py. To use it, you can simply export the path to
this file (in Python module format) like so:

(django-1.8)$ export DJANGO_SETTINGS_MODULE=patchwork.settings.dev

And adjust your database settings through environment variables. See the
Environment Variables section below for details. For example:

(django-1.8)$ export PW_TEST_DB_USER=root
(django-1.8)$ export PW_TEST_DB_PASS=password

You may also provide your own settings file and have DJANGO_SETTINGS_MODULE
point to that file.

	Run the development server

(django-1.8)$./manage.py runserver

Once finished, you can kill the server (Ctrl + C) and exit the
virtual environment:

(django-1.8)$ deactivate
$

Should you wish to re-enter this environment, simply source the
activate script again.

Environment Variables

The following environment variables are available to configure various settings
if dev.py is used:

	PW_TEST_DB_NAME

	Name of the database. Defaults to patchwork.

	PW_TEST_DB_USER

	User name to access the database with. Defaults to patchwork.

	PW_TEST_DB_PASS

	Password to access the database with. Defaults to password.

	PW_TEST_DB_TYPE

	Type of database to use. Either mysql (default) or postgres.

Running Tests

patchwork includes a tox [https://tox.readthedocs.org/en/latest/]
script to automate testing. Before running this, you should probably
install tox:

$ pip install tox

You can show available targets like so:

$ tox --list

You’ll see that this includes a number of targets to run unit tests
against the different versions of Django supported, along with some
other targets related to code coverage and code quality. To run these,
use the -e parameter:

$ tox -e py27-django18

In the case of the unit tests targets, you can also run specific tests
by passing the fully qualified test name as an additional argument to
this command:

$ tox -e py27-django18 patchwork.tests.SubjectCleanUpTest

Because patchwork supports multiple versions of Django, it’s very
important that you test against all supported versions. When run without
argument, tox will do this:

$ tox

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/1.0/	

 	
 	
 GET /api/1.0/patches/	

 	
 	
 GET /api/1.0/patches/(int: patch_id)/	

 	
 	
 GET /api/1.0/patches/(int: patch_id)/mbox/	

 	
 	
 GET /api/1.0/projects/	

 	
 	
 GET /api/1.0/projects/(int: project_id)/	

 	
 	
 GET /api/1.0/projects/(int: project_id)/events/	

 	
 	
 GET /api/1.0/projects/(int: project_id)/patches/	

 	
 	
 GET /api/1.0/projects/(int: project_id)/series/	

 	
 	
 GET /api/1.0/projects/(string: linkname)/	

 	
 	
 GET /api/1.0/projects/(string: linkname)/events/	

 	
 	
 GET /api/1.0/projects/(string: linkname)/patches/	

 	
 	
 GET /api/1.0/projects/(string: linkname)/series/	

 	
 	
 GET /api/1.0/series/	

 	
 	
 GET /api/1.0/series/(int: series_id)/	

 	
 	
 GET /api/1.0/series/(int: series_id)/revisions/	

 	
 	
 GET /api/1.0/series/(int: series_id)/revisions/(int: version)/	

 	
 	
 GET /api/1.0/series/(int: series_id)/revisions/(int: version)/mbox/	

 	
 	
 GET /api/1.0/series/(int: series_id)/revisions/(int: version)/test-results/	

 	
 	
 POST /api/1.0/series/(int: series_id)/revisions/(int: version)/test-results/	

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/testing-ci-flow.png
@ Developer sends patches
v
Mailing-ist
@ Patchwork collects series Patchwork sends test results back to
the mailing-list and/or submitter
Static Analysis
v
@ Patchwork exposes series of patches
Patchwork Basic Acceptance Tests

@ Cl systems post test results

Benchmarks

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Patchwork’s documentation!

 		
 patchwork

 		
 Download

 		
 Design

 		
 patchwork should supplement mailing lists, not replace them

 		
 Don’t pollute the project’s changelogs with patchwork poop

 		
 patchwork users shouldn’t require a specific version control system

 		
 Getting Started

 		
 Support

 		
 Deploying Patchwork

 		
 Database Configuration

 		
 Install Packages

 		
 Create Required Databases and Users

 		
 Configure Settings

 		
 Django Setup

 		
 Configure Directories

 		
 Configure Settings

 		
 Configure Database Tables

 		
 Other Tasks

 		
 Apache Setup

 		
 WSGI

 		
 Configure patchwork

 		
 Subscribe a Local Address to the Mailing List

 		
 Setup your MTA to Deliver Mail to the parsemail Script

 		
 Set up the patchwork cron script

 		
 (Optional) Configure your VCS to Automatically Update Patches

 		
 User Manual

 		
 Submitting patches

 		
 Initial Submission

 		
 New Versions

 		
 git-pw

 		
 Installation

 		
 Setup

 		
 Testing with Patchwork

 		
 Flow

 		
 Series and Revisions

 		
 Polling for events

 		
 Testing

 		
 Test results

 		
 Email reports

 		
 git-pw helper commands

 		
 git pw poll-events

 		
 git pw post-result

 		
 Example: running checkpatch.pl on incoming series

 		
 REST API

 		
 API Patterns

 		
 Lists

 		
 API Reference

 		
 API Metadata

 		
 Projects

 		
 Events

 		
 Series

 		
 Patches

 		
 API Revisions

 		
 Developing patchwork

 		
 Quick Start

 		
 Using virtualenv

 		
 Environment Variables

 		
 Running Tests

_static/up.png

_static/up-pressed.png

